
Reusable Modules

It's as easy as ABI
Hi everyone, I'm Jordan an Android Developer working here on Marks & Spencer's
mobile platform team.

Where among many things, we care about the health of the builds within the business.

This has led me onto a deep dive of something I think is important; reusable modules.

This might sound silly, after all, modules are normally reusable things.

Over the next ten minutes or so, I want to have a look at two things that impact the re‐
usability of a module of code. Then we'll look at how we can visualise this. Finally, I'll
come up with some ground rules for you all to take away.

I want to preface this talk by saying that I specialise in Android and the JVM. I haven't
branched out and tested this in Kotlin JS or Multiplatform. I assume the same rules
roughly apply, but don't quote me on that.

This is a Kotlin conference after all, so I think we should make a start with some Kotlin.

Visibility Modifiers

public , internal and private

The key part of this talk that directly relates to Kotlin is visibility modifiers.

This is such a key foundational part of the language that I am sure you know that they
are.

But, as I've been delving into this topic of Reusable modules I've found that the impact
of them is often overlooked.

We have what I consider to be the three core visibility modifiers in Kotlin: public in‐
ternal private

public

public class LoginViewModel()

 : ViewModel() {

}

– class is accessible out of compilation module
– public is optional

First is public , here we've create a new ViewModel and we've made it public. We've
done this by writing public before the class keyword.

Generally, this also works without the public keyword.

This means that anything consuming a module containing this code can access and
use this class.

internal

public class LoginViewModel internal constructor()

 : ViewModel() {

}

– internal constructor
– LoginViewModel cannot be made constructed of the compilation module

Next, we have internal . In this example we have placed an internal keyword before
the constructor .

This means that the constructor is not public. It can only be accessed by the same
module that this ViewModel is compiled in.

This is a great way of scoping some code to just the module we are in.

private

public class LoginViewModel internal constructor()

 : ViewModel() {

 private val _state = MutableStateFlow<UiState>(UiState.Loading)

 val state: StateFlow<UiState> = _state.asStateFlow()

}

– private MutableStateFlow
– public StateFlow

Finally, private .

Here, we've added two new properties to our LoginViewModel . One of which is private,
this field is use a MutableStateFlow from the coroutines library.

We've also made a non-mutable field public.

The private field means this property is private to the scope it is defined in. By that,
if you've defined something top level in a file it is accessible to an entire file. If you
define it like we have here, it is accessible to the class it is defined in.

Okay this is ask well and good. But not super interesting. Let's look at some Gradle.

Dependencies

api and implementation

Gradle is the "go to" build tool for Kotlin, others exist like Maven etc etc. But I want to
focus on this.

We use Gradle to turn our code from text to a an executable program.

Now for Gradle. You probably know this, but Gradle is the go to tool for building our
code. That is taking it from letters on our screen to a program that executes.

The thing we care about here is dependencies and how we declare them! The two
ways to do this require us to this are:

api and implementation .

implementation

dependencies {

 implementation 'androidx.lifecycle:lifecycle-viewmodel-ktx:2.8.6'

}

– Dependency is consumed by this compilation module
–
Available at compilation and runtime
When we declare a dependency as the implementation keyword we say that I want
this dependency to be consumed by this module.

This means that the module can independently compile against and execute against
the classes defined in a library.

api

dependencies {

 implementation 'androidx.lifecycle:lifecycle-viewmodel-ktx:2.8.6'

 api 'org.jetbrains.kotlinx:kotlinx-coroutines-core:1.9.0'

}

– Dependency is consumed and produced by this compilation module
–
Available at compilation and runtime
When we declare a dependency as an api we say that I want this dependency to
be consumed by this module, but also be produced by it.

This means that the module can independently compile against and execute against
the classes defined in a library. Not only that, but it will produce that library for con‐
sumers of this module.

Application Binary Interface

Our usage of modifiers and dependencies comes together to form something called an
application binary interface.

What is an application binary interface?

The ABI itself is the enumeration of all classes/functions and properties that are public
from a module. It's how other modules see and think about other modules.

It's also used for binary compatibility; by comparing one ABI (say from a prior release)
to the ABI in a pull request you can confirm you don't break the public API of a library
across library versions.

Okay, that sounds good. But does one of these ABIs look like?

@Lkotlin/Metadata;

public final class uk/co/jordanterry/LoginViewModel : androidx/life‐

cycle/ViewModel {

 public final fun getState ()Lkotlinx/coroutines/flow/StateFlow;

}

Here is the ABI of the LoginViewModel I put together earlier in this talk.

@Lkotlin/Metadata;

public final class uk/co/jordanterry/LoginViewModel : androidx/life‐

cycle/ViewModel {

– We see our public final class
– Fully qualified LoginViewModel
– Fully qualified Androidx ViewModel

 public final fun getState ()Lkotlinx/coroutines/flow/StateFlow;

– public final function called getState
– Fully qualified reference to KotlinX StateFlow

 public final class uk/co/jordanterry/LoginViewModel : androidx/life‐

cycle/ViewModel {

oh oh! Something doesn't add up.

dependencies {

 api 'org.jetbrains.kotlinx:kotlinx-coroutines-core:1.9.0'

 implementation 'androidx.lifecycle:lifecycle-viewmodel-ktx:2.8.6'

}

dependencies {

 api 'org.jetbrains.kotlinx:kotlinx-coroutines-core:1.9.0'

 api 'androidx.lifecycle:lifecycle-viewmodel-ktx:2.8.6'

}

Recap

– The usage of visibility modifiers impacts your ABI
– Your ABI is a proxy for what consumers of other modules see
– You should produce dependencies that have classes on your ABI

Why should you care about this?

– Developer Experience
– Compile Time
– Correctness

Want to visualise this?

– Kotlin Binary Compatibility Validator
– Metalava
– Dependency Analysis Gradle Plugin

Questions?

https://github.com/Kotlin/binary-compatibility-validator
https://android.googlesource.com/platform/tools/metalava/
https://github.com/autonomousapps/dependency-analysis-gradle-plugin/tree/main

